

WEEKLY TEST TYJ TEST - 11 Balliwala SOLUTION Date 30-06-2019

[PHYSICS]

1		Average speed = $\frac{\text{total distance covered}}{1}$
		total time taken
		$\mathbf{v}_{av.} = \frac{\frac{x}{2} + \frac{x}{2}}{\frac{x/2}{40} + \frac{x/2}{60}} = \frac{x}{\left(\frac{x}{80} + \frac{x}{120}\right)}$
		$=\frac{80\times120}{(120+80)}=48 \text{ km/h}$
2.		$200 = u \times 2 - (1/2) a(2)^2 \text{ or } u - a = 100 \qquad \dots(i)$
	or	u - 3a = 70(ii)
		Solving eqns. (i) and (ii), we get; $a = 15 \text{ cm/s}^2$ and $u = 115 \text{ cm/s}$. Further $y = u - at = 115 - 15 \times 7 = 10 \text{ cm/sec}$
3.		When a body slides on an inclined plane, component of weight along the plane produces an acceleration
		$a = \frac{mg\sin\theta}{m} = g\sin\theta = constt.$
		If s be the length of the inclined plane, then
		$s = 0 + \frac{1}{2}at^2 = \frac{1}{2}g\sin\theta \times t^2$
	÷	$\frac{s'}{s} = \frac{t'^2}{t^2}$ or $\frac{s}{s'} = \frac{t^2}{t'^2}$
		Given t = 4 sec and s' = $\frac{s}{4}$
	÷	$t' = t\sqrt{\frac{s'}{s}} = 4\sqrt{\frac{s}{4s}} = \frac{4}{2} = 2 \sec t$
4.		Given that; $a = 3t + 4 \text{ or } \frac{dv}{dt} = 3t + 4$
		$\int_0^v dv = \int_0^t (3t+4)dt \text{ or } v = \frac{3}{2}t^2 + 4t$
		$v = \frac{3}{2}(2)^2 + 4(2) = 14 \text{ ms}^{-1}$

5. For first body :

$$\frac{1}{2}$$
gt² = 176.4 or $t = \sqrt{\frac{176.4 \times 2}{10}}$

or t = 5.9 s For second body : t = 3.9 s $u(3.9) + \frac{1}{2}g(3.9)^2 = 176.4$ $3.9u + \frac{10}{2}(3.9)^2 = 176.4$ or u = 24.5 m/s 6. The resultant velocity of the boat and river is 1.0 km/0.25 h = 4 km/h.Velocity of the rive $=\sqrt{5^2-4^2}=3 \text{ km/h}$ Let he be the height of the tower. 7. Using $v^2 - u^2 = 2as$, we get; Here, u = u, a = -g, s = -h and v = -3u (upward direction + ve) \therefore 9u² - u² = 2gh or h = 4u²/g $t = \sqrt{\frac{2h}{g}}$ 8. $s = 10 \times \frac{t}{2} - \frac{1}{2}g \times \frac{t^2}{4} = 5\sqrt{\frac{2h}{g}} - \frac{g}{8}\frac{2h}{g}$ $v^2 - u^2 = 2gh$ or 100 = 2gh or $10 = \sqrt{2gh}$ $s = \sqrt{\frac{2gh \times 2h}{4 \times g}} - \frac{h}{4} = h - \frac{h}{4} = \frac{3h}{4}$ $t = \frac{1}{u + v} = \frac{1}{\frac{1}{t_1} + \frac{1}{t_2}}$ 9. or $\frac{1}{t} + \frac{1}{t_1} + \frac{1}{t_2}$ or $t = \frac{t_1 t_2}{(t_1 + t_2)}$ 10. For first body : $v^2 = u^2 + 2gh$ or $(3)^2 = 0 + 2 \times 9.8 \times h$ or $h = \frac{(3)^2}{2 \times 9.8} = 0.46 \text{ m}$ For second body : $v^2 = (4)^2 + 2 \times 9.8 \times 0.46$ $v = \sqrt{(4)^2 + (2 \times 9.8 \times 0.46)} = 5 \text{ m/s}$ *.*... 11. Given y = 0Distance travelled in 10 s, $S_1 = \frac{1}{2}a \times 10^2 = 50a$ Distance travelled in 20 s,

$$S_2 = \frac{1}{2}a \times 20^2 = 200a$$

. $S_2 = 4S_1$

WEEKLY TEST SOLUTION - TYJ =

- During the first 5 seconds of the motion, the acceleration is ve and during the next 5 seconds it becomes positive. (Example : a stone thrown upwards, coming to momentary rest at the highest point). The distance covered remains same during the two intervals of time.
- 13. Gain in angular KE = loss in PE

If I = length of the pole, moment of inertial of the pole about the edge = M $\left[\frac{l^2}{12} + \frac{l^2}{4}\right] = \frac{Ml^2}{3}$

Loss in potential energy =
$$\frac{\text{Mgl}}{2}$$

Gain in angular $KE = \frac{1}{2}I\omega^2 = \frac{1}{2} \times \frac{MI^2}{3} \times \omega^2$

$$\therefore \quad \frac{1}{2}\frac{MI}{3}\omega^2 = \frac{MgI}{2} \quad \text{or} \quad (I\omega)^2 = 3g$$

or $l\omega = v = \sqrt{3gl}$

 $=\sqrt{3\times10\times30}=30ms^{-1}$

14. Let the velocity of the scooter be $v ms^{-1}$. Then (v - 10)100 = 100 or $v = 20 ms^{-1}$ 15. Let x be the distance between the particles after t second. Then

$$x = vt - \frac{1}{2}at^2 \qquad \dots \dots (i)$$

For x to be maximum,

$$\frac{dx}{dt} = 0$$

or v - at = 0

or $t = \frac{v}{a}$

Putting this value in eqn. (i), we get;

$$\mathbf{x} = \mathbf{v} \left(\frac{\mathbf{v}}{\mathbf{a}} \right) - \frac{1}{2} \mathbf{a} \left(\frac{\mathbf{v}}{\mathbf{a}} \right)^2 = \frac{\mathbf{v}^2}{2\mathbf{a}}$$

[CHEMISTRY]

16.

17. Within a group IE_1 decreases from top to bottom.

- 18. After the removal of second electron, the ion acquires noble gas configuration and it becomes difficult to remove the third electron.
- 19. 20.
- 20. 21.

22.

24.

- 23. With negative sign the chlorine has highest electron gain enthalpy (in magnitude)
- 25. All have 18 electrons.
- 26. The ionic radii follow the order : $C^{4-} > N^{3-} > O^{2-}$ and therefore, N³⁻ would have value between 2.60 and 1.40 Å.

27.

- 28.
- 29.
- 30. The general electronic configuration of d-block elements is $(n 1)d^{1-10}$, ns^{1-2} . They show variable oxidation state because d-electrons also take part in bond formation. They have take part in bond formation. They have degenerated orbitals. s and p-block elements in general do not show variable oxidation states.

